
Bluetooth Tracking
Apple iPhone/iWatch

Alternative HACS Integration: iPhone Detect

https://community.home-assistant.io/t/implement-espresense-fuctionality-in-home-assistant-taking-
advantage-of-ble-proxy-of-esphome/524019/6

Thanks to user Jacob Pfeifer!
Ok, so looks like I've got signal strength tracking working for Apple watches by getting the mac
address from the home assistant private ble device integration. Here's a quick write-up if anyone
else is interested. The end of the doc has a complete configuration file example.

Tracking an Apple Watch in esphome
Using esphome on an Apollo msr-1 to track an Apple Watch

Acknowledgements:
The following github repo was used as a starting point for this configuration:
https://github.com/dalehumby/ESPHome-Apple-Watch-detection

RSSI Tracking
1.) Setup your apple watch in the "Private BLE Device" integration by following the instructions on the
integration page: https://www.home-assistant.io/integrations/private_ble_device/

2.) Create a text sensor in the esphome config that grabs the apple watch current mac address from home
assistant:
```yaml
text_sensor:
  - platform: homeassistant
    name: "Apple Watch Current MAC Address"
    id: apple_watch_mac
    entity_id: device_tracker.your_apple_watch_home_assistant_id
    attribute: current_address
```

https://github.com/mudape/iphonedetect
https://community.home-assistant.io/t/implement-espresense-fuctionality-in-home-assistant-taking-advantage-of-ble-proxy-of-esphome/524019/6
https://community.home-assistant.io/t/implement-espresense-fuctionality-in-home-assistant-taking-advantage-of-ble-proxy-of-esphome/524019/6
https://discord.com/channels/1126966963206361199/1126966963755819080/1202032228050419732

3.) Create a template sensor for storing and transmitting the rssi value:
```yaml
sensor:
  - platform: template
    id: apple_watch_rssi
    name: "Apple Watch RSSI"
    device_class: signal_strength
    unit_of_measurement: dBm
    accuracy_decimals: 0
    filters:
      - exponential_moving_average:
          alpha: 0.3
          send_every: 1
```

4.) Create a custom ble tracker that uses the mac address from home assistant to match the device:
```yaml
esp32_ble_tracker:
  scan_parameters:
    interval: 1.2s
    window: 500ms
    active: false
  on_ble_advertise:
    - then:
      - lambda: |-
          for (auto data : x.get_manufacturer_datas()) {
            if(x.address_str() == id(apple_watch_mac).state) {
              id(apple_watch_rssi).publish_state(x.get_rssi());
            }
          }
```

5) Ensure the power save mode for wifi is set to light (msr-1 defaults to using none which does not work with
bluetooth tracking):
```yaml
wifi:
  power_save_mode: light
```

At this point if you install the changes on the device you should be successfully tracking the rssi for your apple

watch. If you want you can optionally add some configuration for a basic presence detection sensor by doing the
following:

OPTIONAL PRESENCE DETECTION SECTION

6) Create configuration values for detection signal strength:
```yaml
number:
  - platform: template
    name: "RSSI Presence Level"
    id: rssi_present
    icon: "mdi:arrow-collapse-right"
    optimistic: true
    min_value: -100
    max_value: -35
    initial_value: -60
    step: 1
    entity_category: CONFIG
    restore_value: true
    update_interval: never
  - platform: template
    name: "RSSI Absence Level"
    id: rssi_not_present
    icon: "mdi:arrow-collapse-right"
    optimistic: true
    min_value: -100
    max_value: -35
    initial_value: -70
    step: 1
    entity_category: CONFIG
    restore_value: true
    update_interval: never
```

7) Create a sensor for storing and filtering the presence value:
```yaml
sensor:
  - platform: template
    id: room_presence_debounce
    filters:



      - sliding_window_moving_average:
          window_size: 3
          send_every: 1
```

8) Create a sensor for transmitting the filtered presence state:
```yaml
binary_sensor:
  - platform: template
    id: room_presence
    name: "Apple Watch Presence"
    device_class: occupancy
    lambda: |-
      if (id(room_presence_debounce).state > 0.99) {
        return true;
      } else if (id(room_presence_debounce).state < 0.01) {
        return false;
      } else {
        return id(room_presence).state;
      }
```

9) Update the rssi value to set the presence value when it receives a new rssi value:
```yaml
sensor:
  - platform: template
    id: apple_watch_rssi
    name: "Apple Watch RSSI"
    device_class: signal_strength
    unit_of_measurement: dBm
    accuracy_decimals: 0
    filters:
      - exponential_moving_average:
          alpha: 0.3
          send_every: 1
    on_value:
      then:
        - lambda: |-
            if (id(apple_watch_rssi).state > id(rssi_present).state) {
              id(room_presence_debounce).publish_state(1);



            } else if (id(apple_watch_rssi).state < id(rssi_not_present).state) {
              id(room_presence_debounce).publish_state(0);
            }
        - script.execute: presence_timeout  # Publish 0 if no rssi received
```

Now once you install the esphome changes you should be able to go to the device and set db values for the
presence detection and also should see a presence sensor state.

COMPLETE CONFIGURATION
A complete example of a configuration:
```yaml
substitutions:
  name: apollo-msr-1-6c7a64
  friendly_name: Living Room Multisensor
  roomname: Living Room
  yourname: Jacob

packages:
  ApolloAutomation.MSR-1: github://ApolloAutomation/MSR-1/Integrations/ESPHome/MSR-1.yaml
esphome:
  name: ${name}
  name_add_mac_suffix: false
  friendly_name: ${friendly_name}
api:
  encryption:
    key: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

esp32_ble_tracker:
  scan_parameters:
    interval: 1.2s
    window: 500ms
    active: false
  on_ble_advertise:
    - then:
      - lambda: |-
          for (auto data : x.get_manufacturer_datas()) {
            if(x.address_str() == id(jacobs_watch_mac).state) {
              id(apple_watch_rssi).publish_state(x.get_rssi());



            }
          }
text_sensor:
  - platform: homeassistant
    name: "Apple Watch Current MAC Address"
    id: jacobs_watch_mac
    entity_id: device_tracker.jacob_s_apple_watch
    attribute: current_address

sensor:
  - platform: template
    id: apple_watch_rssi
    name: "$yourname Apple Watch $roomname RSSI"
    device_class: signal_strength
    unit_of_measurement: dBm
    accuracy_decimals: 0
    filters:
      - exponential_moving_average:
          alpha: 0.3
          send_every: 1
    on_value:
      then:
        - lambda: |-
            if (id(apple_watch_rssi).state > id(rssi_present).state) {
              id(room_presence_debounce).publish_state(1);
            } else if (id(apple_watch_rssi).state < id(rssi_not_present).state) {
              id(room_presence_debounce).publish_state(0);
            }
        - script.execute: presence_timeout  # Publish 0 if no rssi received
  
  - platform: template
    id: room_presence_debounce
    filters:
      - sliding_window_moving_average:
          window_size: 3
          send_every: 1
          

binary_sensor:
  - platform: template



    id: room_presence
    name: "$yourname $roomname Presence"
    device_class: occupancy
    lambda: |-
      if (id(room_presence_debounce).state > 0.99) {
        return true;
      } else if (id(room_presence_debounce).state < 0.01) {
        return false;
      } else {
        return id(room_presence).state;
      }

script:
  # Publish event every 30 seconds when no rssi received
  id: presence_timeout
  mode: restart
  then:
    - delay: 30s
    - lambda: |-
        id(room_presence_debounce).publish_state(0);
    - script.execute: presence_timeout

number:
  - platform: template
    name: "RSSI Presence Level"
    id: rssi_present
    icon: "mdi:arrow-collapse-right"
    optimistic: true
    min_value: -100
    max_value: -35
    initial_value: -60
    step: 1
    entity_category: CONFIG
    restore_value: true
    update_interval: never
  - platform: template
    name: "RSSI Absence Level"
    id: rssi_not_present
    icon: "mdi:arrow-collapse-right"
    optimistic: true



Android

Helpful links: 
ESP32 Bluetooth Low Energy Tracker Hub
iBeacon support for ble_presence
ESP32 Bluetooth Low Energy Beacon
iBeacon Region

1. Install the iBeacon integration in HA
iBeacon Install Guide

2. Install the Home Assistant App on your device
Android
Apple

3. Navigate to the HA settings

Screenshot_20231109_235524_Photos.jpgImage not found or type unknown

4. Select Companion app

Screenshot_20231109_235557_Photos.jpgImage not found or type unknown

5. Select Manage sensors

Screenshot_20231109_235621_Photos.jpgImage not found or type unknown

    min_value: -100
    max_value: -35
    initial_value: -70
    step: 1
    entity_category: CONFIG
    restore_value: true
    update_interval: never

wifi:
  power_save_mode: light
  ssid: !secret wifi_ssid
  password: !secret wifi_password
```

https://esphome.io/components/esp32_ble_tracker.html
https://github.com/esphome/esphome/pull/1627
https://esphome.io/components/esp32_ble_beacon.html
https://owntracks.org/booklet/features/beacons/
https://www.home-assistant.io/integrations/ibeacon/
https://play.google.com/store/apps/details?id=io.homeassistant.companion.android&hl=en_US&gl=US&pli=1
https://apps.apple.com/us/app/home-assistant/id1099568401
https://wiki.apolloautomation.cloud/uploads/images/gallery/2023-11/screenshot-20231109-235524-photos.jpg
https://wiki.apolloautomation.cloud/uploads/images/gallery/2023-11/screenshot-20231109-235557-photos.jpg
https://wiki.apolloautomation.cloud/uploads/images/gallery/2023-11/screenshot-20231109-235621-photos.jpg

6. Turn on the "BLE Transmitter"

Screenshot_20231109_235702_Photos.jpgImage not found or type unknown

7. After opening BLE transmitter and turning it on, then scroll down to get the iBeacon
unique ID

Screenshot_20231109_235757_Photos.jpgImage not found or type unknown

8. Add it to the ESPHome yaml config for the MSR-1

ESPHome YAML Edit.pngImage not found or type unknown

9. Be sure to add "power_save_mode: LIGHT" to the wifi section

Example config.yaml
wifi:
 ssid: !secret wifi_ssid
 password: !secret wifi_password
 power_save_mode: LIGHT

esp32_ble_tracker:

binary_sensor:
 - platform: ble_presence
 ibeacon_uuid: '77a6438d-ea95-4522-b46c-cb2b4412076f'
 ibeacon_major: 100
 ibeacon_minor: 1
 name: "Jane's Phone"

10. Should be all set!

Thanks to our Discord user albuquerquefx for the information below!

For those interested in using their MSR-1 as a Bluetooth proxy while also actively scanning for BLE
devices, you'll need to add the following to your ESP32 YAML file (I'm using a 1.5-second scan
interval with a 750ms window for sensing BLE beacons):

esp32_ble_tracker:
 id: ${name}_ble_tracker
 scan_parameters:

https://wiki.apolloautomation.cloud/uploads/images/gallery/2023-11/screenshot-20231109-235702-photos.jpg
https://wiki.apolloautomation.cloud/uploads/images/gallery/2023-11/screenshot-20231109-235757-photos.jpg
https://wiki.apolloautomation.cloud/uploads/images/gallery/2023-11/esphome-yaml-edit.png

 interval: 1500ms
 window: 750ms
 active: true

bluetooth_proxy:
 active: true

Additionally, you need to include this entry in your existing Wi-Fi section:

power_save_mode: light

Once complete, after a few minutes within the presence of any iBeacon device within listening
distance of your MSR-1, Home Assistant should announce the presence of an iBeacon Tracker
integration on your settings page. While I didn't capture a screenshot of it, it's now installed and
sensing things.

If you encounter a device with a blank name (e.g., anything Android), you'll need to click
"Configure" and enter the UUID manually. This is because Home Assistant does not allow devices
with empty names (interestingly, their own companion app permits forcing an Android to become
an iBeacon but then doesn't require a name field).

For devices where you don't know the IRK, you may have to wait about 300 seconds for your
iBeacon Tracker to process 10 different iterations of the same UUID but with the last four
characters randomly changed. Once ten instances have appeared, the iBeacon Tracker integration
should recognize they're all the same device and combine them into a single tracker element. Just
be patient, though it can be a bit frustrating.

Revision #14
Created 5 December 2023 04:34:08 by Trevor
Updated 21 March 2024 12:57:00 by justin@apolloautomation.cloud

